Anomaly detection with machine learning methods at Forsmark
Information
Författare: Simon SjögrenBeräknat färdigt: 2023-06
Handledare: Albin Björn
Handledares företag/institution: Forsmarks Kraftgrupp AB
Ämnesgranskare: Jens Sjölund
Övrigt: -
Presentation
Presentatör: Simon SjögrenPresentationstid: 2023-05-29 14:15
Opponent: Madeleine Sjöholm
Abstract
Nuclear power plants are inherently complex systems. While the technology has been used to generate electrical power for many decades, process monitoring continuously evolves. There is always room for improvement in terms of maximizing the availability by reducing the risks of problems and errors. In this context, automated monitoring systems have become important tools – not least with the rapid progress being made in the field of data analytics thanks to ever increasing amounts of processing power.
There are many different types of models that can be utilized for identifying anomalies. Some rely on physical properties and theoretical relations, while others rely more on the patterns of historical data. In this thesis, a data-driven approach using a hierarchical autoencoder framework has been developed for the purposes of anomaly detection at the Swedish nuclear power plant Forsmark. The model is first trained to recognize normal operating conditions. The trained model then creates reference values and calculates the deviations in relation to real data in order to identify any issues. This proof-of-concept has been evaluated and benchmarked against a currently used hybrid model with more physical modeling properties in order to identify benefits and drawbacks.
Generally speaking, the created model has performed in line with expectations. The currently used tool is more flexible in its understanding of different plant states and is likely better at determining root causes thanks to its physical modeling properties. However, the created autoencoder framework does bring other advantages. For instance, it allows for a higher time resolution thanks to its relatively low calculation intensity. Additionally, thanks to its purely data-driven characteristics, it offers great opportunities for future reconfiguration and adaptation with different signal selections.