Hoppa till innehåll

  • Start
  • Nyheter
  • Om Programmet
    • Varför STS?
    • Fördjupning om programmet
    • Ämnesöversikt
    • Intervjuer
  • Arbetsmarknad
    • För studenten
  • Student på programmet
    • Studieresurser
    • C-uppsatser
    • Utlandsstudier
  • Examensarbete
    • Att skriva examensarbete
    • Platsannonser
    • Registrera examensarbete
    • Boka tid för presentation
    • Listor över examensarbeten
    • Kommande Exjobbspresentationer
Sök

Machine learning based classification of bone disease in multiple myeloma patients

Information

Författare: Per-Emil Fredén
Beräknat färdigt: 2025-09
Handledare: Muhammad Kashif
Handledares företag/institution: Karolinska Institutet
Ämnesgranskare: Sven-Olof Nyström
Övrigt: -


Presentation

Presentatör: Per-Emil Fredén
Presentationstid: 2025-10-29 11:15
Opponent: Nils Carlberg

Abstract

Multiple Myeloma is an incurable and deadly hematological cancer. Globally, its impact is esti- mated around 180 000 deaths annually. One of the reasons for this mortality is a myeloma related complication called bone disease. Bone disease is manifested in around 80% of multiple myeloma patients.

In this thesis, we developed a biomarker for stratification of patients at risk of bone disease in multiple myeloma. For this purpose, we integrated a web data mining method called NetRank, with the machine learning algorithms Support Vector Machines and Random Forest, and then applied them to a cohort of 85 myeloma patients.

My results was a biosignature for stratification of at risk bone disease patients with accuracy of 85% and F1-score of 88%, showing that the model could separate the two classes and make reliable classifications in both. This biosignature only consisted of 25 features, 22 transcriptomic features and 3 clinical features, showing its potential for clinical applications. To ensure that the models results are not due to the model overfitting, both the internal crossvalidation results and the external test- set results were analysed. In short, a biosignature for risk stratification of bone disease patients in multiple myeloma is discovered that could be applied in clinical settings for real-world validation.

Ladda ner rapporten

Machine learning based classification of bone disease in multiple myeloma patients
  • Start
  • Nyheter
  • Om Programmet
    • Varför STS?
    • Fördjupning om programmet
    • Ämnesöversikt
    • Intervjuer
  • Arbetsmarknad
    • För studenten
  • Student på programmet
    • Studieresurser
    • C-uppsatser
    • Utlandsstudier
  • Examensarbete
    • Att skriva examensarbete
    • Platsannonser
    • Registrera examensarbete
    • Boka tid för presentation
    • Listor över examensarbeten
    • Kommande Exjobbspresentationer

Kontakt

Hemsideansvarig
Studievägledare
STS-sektionen

Andra webbplatser

Uppsala Universitet
Schema
Antagning.se
Antagningsstatistik
Hittatenta.se
STS-sektionens hemsida

 

Integritetspolicy | STS-programmet 2024